Изобретение гальванометра
Первый подковообразный электромагнит сделал в 1825 г. американец Уильям Стерджен (1783 — 4850). Этот электромагнит немало удивил исследователей быстротой намагничивания и размагничивания бруска мягкого железа при включении или выключении тока в проводнике, которым был обмотан брусок.
Конструкцию Стерджена улучшили одновременно и независимо друг от друга в 1831 г. Молль (1785—1838) и американец Джозеф Генри (1797—1878).
За первой, написанной на латинском языке статьей Эрстеда последовала вторая, написанная по-немецки, которая тем не менее осталась малоизвестной. В ней Эрстед показал взаимность открытого им электромагнитного явления. Он подвешивал к проволоке маленькую батарейку, замыкал цепь и регистрировал ее вращение при приближении к ней магнита. То же самое, независимо от Эрстеда, обнаружил и Ампер, которому обычно это открытие и приписывается.
Еще проще продемонстрировал действие магнита на подвижный элемент тока Дэви, приблизив по совету Араго полюс магнита к электрической дуге. Стерджен видоизменил опыт Дэви и придал своему эксперименту тот вид, в каком и сегодня он демонстрируется на уроках физики, когда дуга непрерывно вращается в магнитном поле.
Но первым физиком, которому удалось получить вращение проводника с током в магнитном поле, был Фарадей. В 1821 г. он сконструировал очень простое приспособление: конец подвешенного проводника был опущен в резервуар с ртутью, в который снизу входил слегка выступающий над поверхностью ртути вертикальный магнит. При пропускании тока через ртуть и проводник последний начинал вращаться вокруг магнита. Опыт Фарадея, блестяще модифицированный Ампером, бесчисленными способами варьировался затем на протяжении всего XIX века.
Здесь мы укажем лишь на описанное в 1823 г. «колесо Барлоу», потому что оно представляет собой разновидность электрического мотора, который вполне может служить еще и сегодня педагогам для учебных целей. Это металлическое колесо с горизонтальной осью, край которого погружен в ванночку с ртутью и находится между полюсами подковообразного железного магнита. Если от оси колеса к его периферии и далее через ртуть течет ток, колесо вращается.
Правила Эрстеда об отклонении магнитной стрелки и соответствующее правило Ампера указывали на то, что отклонение возрастает, если тот же ток пропускать и над магнитной стрелкой и под ней. Это явление, предсказанное Лапласом и хорошо изученное Ампером, было использовано в 1820 г. Иоганном Швейггером (1779—1857) при конструировании мультипликатора, представлявшего собой прямоугольную рамку, обмотанную несколько раз проводом, по которому протекал ток. В середине рамки помещалась магнитная стрелка.
Почти одновременно Авогадро и Микелотти построили другой тип мультипликатора, несомненно, гораздо менее удачный, чем швейггеров-ский; описание его опубликовано в 1823 г. Однако в мультипликаторе Авогадро и Микелотти имелось одно новшество: магнитная стрелка, подвешенная на нити, вращалась над разграфленным сектором, а весь аппарат помещался под стеклянным колпаком.
Вначале казалось, что мультипликатор представляет собой предельно чувствительный гальванометр, но вскоре обнаружили, что его можно значительно улучшить. Уже в 1821 г. Ампер сконструировал «астатический аппарат», как он его назвал, подобный тому, который применял Вассалли Эанди, а еще раньше, в 1797 г., Джон Тремери.
Прибор состоял из двух параллельных жестко связанных магнитных стрелок с полюсами, направленными в противоположные стороны. Вся система подвешивалась на острие, и можно было наблюдать, как она поворачивалась при пропускании электрического тока через параллельный проводник, расположенный очень близко к нижней стрелке. Таким способом Ампер доказал, что магнитная стрелка, когда она не подвержена магнитному влиянию Земли, располагается перпендикулярно току.
Леопольдо Нобили (1784—1835) пришла удачная мысль сочетать астатический аппарат Ампера с подвеской на нити, как у Авогадро и Микелотти; таким образом он пришел к своему известному астатическому гальванометру, первое описание которого он представил на заседании Моденской Академии наук 13 мая 1825 г. Чтобы дать представление о чувствительности этого инструмента, Нобили замечает, что, если соединить концы провода гальванометра железной проволокой, достаточно согреть один из стыков пальцами, чтобы стрелка отклонилась на 90°.
Гальванометр Нобили в течение нескольких десятилетий оставался самым чувствительным измерительным прибором в физических лабораториях. В 1828 г. Эрстед решил улучшить его, применив вспомогательный подковообразный магнит. Эта попытка успехом не увенчалась, но о ней все же следует упомянуть как о первом приборе с вспомогательным полем.
Эти измерительные приборы были значительно усовершенствованы лишь с появлением в 1837 г. тангенс-буссоли Клода Пуйе (1790—1868) и синус-буссоли, употреблявшейся уже за год до того тем же Пуйе. Возможно, Пуйе и сам не знал точно теории действия своего инструмента, которая была дана в 1840 г. Вильгельмом Вебером (1804—1891).
В 1837 г. А. С. Беккерель изобрел «электромагнитные весы», получившие распространение лишь во второй половине столетия. Затем появились другие типы тангенс-буссолей: Гельмгольца (1849 г.), Гогэна (1853 г.), Кольрауша (1882 г.). Тем временем Поггендорф с 1826 г. ввел метод зеркального отсчета, развитый затем Гауссом (1832 г.) и примененный в зеркальном гальванометре Вебером в 1846 г.
С большим энтузиазмом был принят гальванометр, изобретенный в 1886 г. Д'Арсонвалем (1851—1940), в котором, как известно, измеряемый ток проходит через легкую подвижную катушку, помещенную в магнитном поле.
Марио Льецци "История физики"