Электронная электротехническая библиотека

.: Навигация по сайту





.: Электронная электротехническая библиотека

Из истории «металлического» электричества, открытого Вольта

Когда Вольта изобрел гальванический элемент, перед ним встал вопрос: в чем причина возникновения электрического тока — в соприкосновении двух металлов или же в соприкосновении металлов с жидкостями?

Вольта попробовал вообще убрать жидкости и поставил такой опыт. На чувствительный электроскоп помещался медный диск, покрытый сверху тонким слоем изолятора. На него клали такой же цинковый диск с изолирующей ручкой и эти два диска на мгновение соединяли медной проволокой. Затем проволоку убирали и снимали верхний диск. Электроскоп показывал наличие заряда. Вольта объяснял этот опыт так. Когда два разнородных металла привели в соприкосновение, они получили разноименные заряды. Но эти заряды, притягивая друг друга, оставались по разные стороны изолятора. Когда верхний заряженный диск убрали, заряды с нижнего диска попали на лепестки электроскопа. И никакой жидкости при этом не было.

Следовательно, все дело просто в соприкосновении двух металлов! Но с самими металлами при этом совершенно ничего не происходило, кроме возникновения заряда. Значит, как утверждал Вольта, ему удалось открыть источник электрического тока, который может работать только от соприкосновения металлов, не меняя и не расходуя их.

Из истории «металлического» электричества, открытого Вольта

Была только одна «маленькая деталь»: к сожалению, цинковый электрод в гальванических элементах почему-то все время окислялся и окись цинка прерывала ток. Электроды приходилось чистить. Вольта все время пытался сделать гальванические элементы лучшей конструкции, но никак не мог избавиться от появления окиси. Тем не менее он был уверен, что в принципе задача разрешима и он осуществил мечту — создал вечный двигатель!

После открытия закона сохранения энергии физики и электрохимики подвергают взгляды Вольта резкой критике. Не может идти электрический ток и выделяться тепло без всяких затрат энергии! Не могут возникать электрические явления только от касания двух металлов; в воздухе всегда есть пари, которые оседают на металлы и окисляют их. Вольта открыл вовсе не «металлическое» электричество, а «химическое» электричество, - так как в его элементах химическая энергия переходит в электрическую, потому-то и окисляется цинк!

Посмотрите, с какой замечательной точностью повторяется вся история с Гальвани.

Вольта изобрел гальванический элемент

Гальвани открыл на самом деле «металлическое» электричество, а думал, что открыл «животное электричество»,— говорил Вольта. В основе ошибки Гальвани лежало то, что он не обратил внимания на важнейший факт, который противоречил его теории, — на необходимость наличия двух разных металлов (точнее, внимание обратил, но не придал факту должного значения). Вольта открыл «химическое» электричество, а думал, что открыл «металлическое» электричество, — пишет В. Оствальд в своей «Истории электрохимии». Вольта не обратил внимание на важнейший факт, который противоречил его теории вечного двигателя,— окисление электродов, точнее, не придал ему должного значения.

Но самое интересное состояло в том, что прав был и Гальвани, и его критик Вольта, точно так же, как прав был и Вольта, и его критик Оствальд.

На самом деле Гальвани открыл два разных явления — и «животное электричество», и металлическое. Но сам он считал, что открыл только первое из них, а Вольта считал, что существует только второе. Точно так же и Вольта открыл два разных явления — контактную разность потенциалов, возникающую при соприкосновении двух металлов, и химические источники тока. Но сам Вольта считал, что открыл только первое явление, в то время как его критик Оствальд признавал только второе. (Трудность различить несколько явлений, проявляющихся одновременно или в сходных в чем-то опытах,— весьма типичная ситуация в науке, и мы с этим еще не раз столкнемся.) Только дальнейший ход развития науки показал, в чем были правы и в чем ошибались Гальвани, Вольта и Оствальд.

Вольта изобрел гальванический элемент и физики получили источник постоянного тока

После того, как Вольта изобрел гальванический элемент и физики получили источник постоянного тока, началось быстрое развитие электродинамики, стимулируемое целым рядом практических применений электрического тока. Это в конце концов и позволило выяснить правоту Гальвани.

Уже в 1800 г. было открыто тепловое действие тока, В 1803 г. вышла книга Петрова о вольтовой дуге. В 1820 г. Эрстед открыл действие электрического тока на магнитную стрелку, связав разделы науки об электричестве и магнетизме, которые до этого развивались отдельно. И в течение года (вот еще доказательство, что практические использования не запаздывали!) следуют замечательные разработки этого открытия.

Ампер выдвигает идею электромагнитного телеграфа, Барлоу и Фарадей изготовляют первые примитивные модели электромоторов, а Швейгер изобретает гальванометр — прибор для измерения постоянного тока. Наконец-то появился объективный способ измерить малые токи, которые до этого регистрировались только с помощью лягушачьей лапки.

Гальванометр Швейгера был основан на действии катушки с током на магнитную стрелку, но он был чувствителен и к магнитному полю Земли, что очень мешало точным измерениям.

В 1821 г. Ампер предложил укреплять на одной оси две магнитные стрелки так, что их противоположные полюса были расположены один над другим, это позволило избавиться от влияния магнитного поля Земли. Швейгер вначале изолировал провода воском или сургучом, но через несколько лет в связи с созданием телеграфа появились провода с шелковой изоляцией. В руках физиков оказался достаточно надежный и чувствительный измерительный прибор.

В 1826—1827 гг. немецкий физик Г. Ом открыл закон, который носит его имя. Для электробиологии особенно важно было то, что Ом ввел понятия «сила тока», «сопротивление», которых так не хватало Гальвани и Вольта.

история электротехники

В 1825 г. флорентийский физик Л. Нобили создал высокочувствительный гальванометр, и в 1827 г. с помощью этого прибора ему впервые удалось зарегистрировать разность потенциалов между разными точками тела лягушки. Но, как мы уже говорили, просто поставить опыт еще недостаточно, надо еще его правильно понять.

Нобили был последователем Вольта, и поэтому объяснял возникновение зарегистрированных потенциалов тем, что одни участки тканей теплее, чем другие, так как скорость испарения жидкости с разных точек не может быть строго одинаковой. Так Нобили проходит мимо важного открытия.Авторитет Вольта помешал ему не меньше, чем авторитет Джильберта помешал Гальвани.

Начиная с 1837 г. другой итальянский ученый, К. Маттеучи использует гальванометр для объективной проверки опытов Гальвани и его последователей.

Прежде всего, Маттеучи обнаружил, что между интактным (целым) и поврежденным участками мышцы есть разность потенциалов; при этом разрез мышцы всегда играет роль отрицательного полюса. Ток, текущий к поврежденному месту, назвали током повреждения. Этот результат Маттеучи давал объяснение двум первым опытам Гальвани, ведь и Гальвани предполагал, что между интактным и поврежденным участками мышцы течет электрический флюид. Правда, Маттеучи смог зарегистрировать только ток повреждения мышцы, а не нерва (не хватало чувствительности прибора). Но если считать аналогичной ситуацию и для поврежденного нерва, то ясно, что место разреза нерва служило источником тока, который в первом опыте возбуждал мышцу лягушки, а во втором — ее нерв.

Маттеучи обнаружил, что во время возбуждения поврежденной мышцы ток повреждения почему-то убывал. Это очень удивило экспериментатора. Казалось бы, что при возбуждении все должно усиливаться, а не убывать!

Наконец, Маттеучи сделал широко известным третий опыт Гальвани. Маттеучи непосредственно показал, что при возбуждении неповрежденной мышцы между ее частями идет электрический ток, который может возбудить лежащий на ней нерв. Работы Маттеучи носили принципиальный характер: до них, пока единственным измерительным прибором служила сама лапка лягушки, не было уверенности в том, что процессы возбуждения связаны с электрическими явлениями.

После работ Маттеучи это можно было считать доказанным. Напомним, что все это происходило в 1837 г. Это был год столетия со дня рождения Гальвани и год его посмертного торжества. Была доказана правильность объяснения им своих последних опытов. Уже в 1841 г. появляется полное собрание сочинений Гальвани. Гальвани вновь становится знаменит и теперь уже навсегда.

Беркинблит М. Б., Глаголева Е. Г. "Электричество в живых организмах"

www.electrolibrary.info, 2005 - 2020 © All rights reserved

При использовании материалов сайта обязательно должна присутствовать ссылка в виде: http://www.electrolibrary.info - "Электронная электротехническая библиотека"