Электронная электротехническая библиотека

 

Навигация по сайту

Примеры типовых применений частотно-регулируемого привода в металлообрабатывающих станках и технологических линиях

Использование частотных преобразователей для управления скоростью шпинделя токарного станка, регулирования скорости вращения главного привода шлифовального станка, регулирования скорости тяговым органом линии волочения, управления линией продольной и поперченной резки листового металла.

Управление приводом обрабатывающих станков

Управление приводом обрабатывающих станков

1. Управление скоростью шпинделя токарного станка

Работа: Преобразователь частоты 1 регулирует скорость вращения асинхронного двигателя 2 главного привода шпинделя 3. Система работает по замкнутой схеме с обратной связью но скорости вращения. Скорость вращения измеряется импульсным датчиком 6. Режим работы частотно-регулируемого привода задастся с пульта управления 5. Резец 4 плавно перемещается справа налево вдоль вращающейся детали.

До внедрения частотно-регулируемого привода скорость вращения двигателя была неизменной, а скорость шпинделя можно было изменять только дискретно с помощью коробки передач.

Оснащение обрабатывающих станков частотно регулируемым электроприводом позволяет удовлетворить самые жесткие и противоречивые требования, предъявляемые технологией обработки разных материалов. Использование частотно-регулируемого привода позволяет облегчить управление станком за счет возможности плавного изменения числа оборотов шпинделя без его останова, расширить диапазон числа оборотов. Использование коробки передач и частотно-регулируемого привода позволяет оптимально устанавливать число оборотов шпинделя и получить максимальный крутящим момент при малых оборотах.

Управление скоростью шпинделя токарного станка

Главная цель применения преобразователя частоты: увеличение диапазона регулирования скорости вращения шпинделя до значении 1:100 и более и расширение за счет этого возможностей станка по обработке деталей из различных материалов.

Применение частотно-регулируемого привода кроме того обеспечивает:

  • повышение качества обработки детален и снижение количества поломок режущего инструмента за счет точного поддержания скорости вращения шпинделя,

  • уменьшение количества поломок оборудования за счет снижения ударных нагрузок на электропривод и механическую передачу при пуске и останове.

2. Регулирование скорости вращения шлифовального круга

Решаемая задача: прямое регулирование скорости вращения шлифовального круга для обеспечения требуемого качества шлифования различных материалов.

Параметры: скорость вращения круга об мин., несоответствие скорости вращения круга приводит к нарушению качества шлифования. Например, шлифование мягких материалов на большой скорости приводит к «подгоранию» поверхности, а пластик плавится.

Регулирование скорости вращения круга с помощью преобразователя частоты позволяет:

  • расширить возможности станка по обработке различных исходных материалов,

  • подобрать оптимальную скорость вращения круга для повышения качества обработки каждого материала.

Схема станка. Обрабатываемая деталь 1 закрепляется горизонтально на рабочем столе 2. Рабочий стол перемещается относительно вращающегося круга с помощью ручек 3 и 4. Шлифовальный круг 8 вращается высокоскоростным электродвигателем 5 с требуемой для данного материала скоростью. Регулирование скорости вращения достигается использованием преобразователя частоты 6. Заданная требуемая скорость устанавливается с пульта управления 7.

Регулирование скорости вращения шлифовального круга

Параметры процесса

Управление тяговыми органами и механизмами волочильных и наматывающих машин

Для производства пруткового металла, проволоки, труб и других металлоизделии постоянного сечения широкое применение получило волочение. Это непрерывный процесс деформирования металла протягиванием заготовок через одно или несколько калиброванных отверстий (волок) на волочильных станах.

Управление тяговыми органами и механизмами волочильных и наматывающих машин

Работа: Исходный моток проволоки располагается на разматывающем устройстве 1. Через вращающиеся ролики 2, называемые окалиноломатель, проволока подается в установку для нанесения смазки 3. Далее проволока протягивается через волок 4 сужающегося сечения (показано ниже по стрелке).

На приводном барабане волочильной машины 7 укладывается три-четыре витка проволоки. Привод барабана осуществляется от асинхронного двигателя 6, которым управляет преобразователь частоты 8. Сила натяжения проволоки (момент на валу барабана) измеряется датчиком натяжения 5. Сигнал обратной связи с датчика натяжения подается на вход преобразователя частоты. Таким образом, строится замкнутая схема регулирования момента на валу тянущего барабана.

Заданный момент на валу устанавливается на передней панели шкафа управления 9. В этом случае на установившемся режиме работы волочильного стана линейная скорость проволоки на выходе из волока поддерживается постоянной. С выхода волочильной машины через укладчик 14 проволока подастся на приемную катушку 12 наматывающей машины. Укладчик совершает возвратно-поступательные движения, и обеспечивает равномерную укладку проволоки.

Скорость вращения приводного двигателя 13 наматывающей катушки регулируется преобразователем частоты 10, таким образом, что с увеличением диаметра намотки скорость снижается. Диаметр намотки определяется датчиком обратной связи 11. Датчик обратной связи представляет собой переменный резистор, сопротивление которого изменяется пропорционально углу поворота прижимного ролика.

{banner_direct2}

Главная цель применения преобразователя частоты: расширение возможностей волочильного стана по переработке металла различной прочности (твердого и малопластичного, трудно деформируемого, малопрочного) и большого диапазона сечений. Это достигается за счет плавного регулирования скорости волочения в диапазоне 1:1000 и более.

Применение частотно-регулируемого привода, кроме того обеспечивает:

  • автоматизацию работы волочильного стана при переменной нагрузке за счет согласованного регулирования приводных электродвигателей,

  • исключение порывов проволоки за счет плавного пуска и торможения барабана волочильной машины,

  • повышение качества готовой продукции за счет точного поддержания скорости волочения.

Управление линией продольной и поперечной резки листового металла

Применение автоматизированных линии резки становится необходимым практически всегда, когда ведется работа с листовым металлом: изготовление металлоконструкций, металлического профиля, кузовных деталей и т. п. Частотные преобразователи входят в состав систем управления таких линий.

Управление линией продольной и поперечной резки листового металла

В типовой линии резки может быть установлено несколько преобразователей: один из них 1 управляет электроприводом 11 разматывающего устройства 10, другой 2 - электроприводом 6 протяжки листа, третий 3 - электроприводом 4 наматывающего устройства 5. Общее управление осуществляется с панели шкафа управления 9. Для резки металла используются дисковые ножницы 8 и ножницы поперечного реза 7.

В линиях продольной резки электропривод с преобразователем частоты обеспечивает протяжку полосы, плавный пуск/торможение. Скорость движения полосы поддерживается автоматически за счет изменения петли в петлевой яме 12 с помощью датчиков скорости.

В линиях поперечной резки (отсутствует наматывающее устройство и преобразователь 3, на месте петлевой ямы установлен приемный стол 13) электропривод с преобразователем частоты и импульсным датчиком обеспечивает протяжку полосы, плавный пуск торможение и точный останов полосы в момент резки.

Главная цель применения преобразователя частоты: точный останов полосы в момент реза в линиях поперечной резки н поддержание заданной скорости полосы в линиях продольной резки.

Применение частотно-регулируемого привода кроме того обеспечивает:

  • обеспечивает высокую производительность линий резки металла.

  • снижение трудозатрат и уменьшение отходов металла.

Управление процессом резки осуществляется централизованно со шкафа управления. Оператор на панели управления устанавливает количество и длину изготавливаемых полос и листов. 

Источник: Особенности конструкции и функционирования преобразователей частоты "Веспер". Рекомендации по применению. Учебно-методические материалы к семинару.

Не упустите возможность быть в курсе последних технологических новинок и инженерных трендов! Подпишитесь на наш Telegram-канал "Инженерное дело" и получайте первыми увлекательные статьи  и другие эксклюзивные материалы.Наш Telegram-канал: Инженерное дело


Uchmet

Категории: Частотные преобразователи, Металлообрабатывающее оборудование, Модернизация электрооборудования

  • Автоматические системы управления насосными станциями
  • Особенности конструкции и функционирования преобразователей частоты "Веспе ...
  • Примеры типовых применений преобразователей частоты с описанием технологиче ...
  • Избранные статьи и материалы

  • Явно полезное
     



     

    © www.electrolibrary.info, 2005 - 2023 e-mail: electroby@mail.ru При использовании материалов сайта обязательно должна присутствовать ссылка в виде: http://www.electrolibrary.info - "Электронная электротехническая библиотека. Современное инженерное оборудование и системы"